
BROWN’S INVARIANT

Most of research about Connes’ embedding conjecture has been focussing on impressive
reformulations of it, that is, on finding apparently very far statements that turn out to be
eventually equivalent to the original conjecture.

Over the last couple of years another point of view has been also taken, mostly due to
Nate Brown’s paper [1]. He assumes that a fixed separable II1-factor M verifies Connes’
embedding conjecture and tries to tell something interesting about M . In particular,
he managed to associate an invariant to M , now called Brown’s invariant, that carries
information about rigidity properties of M . The purpose of this section is to introduce the
reader to this invariant.

1. Convex combinations of representations into RU

Let M be a separable II1-factor verifiying Connes’ embedding conjecture and fix a free
ultrafilter U on the natural numbers. The set Hom(M,RU ) of unital morphisms M → RU

modulo unitary equivalence is non-empty. We shall show that this set, that is infact
Brown’s invariant, has a surprisingly rich structure.

We can equip Hom(M,RU ) with a metric in a reasonably simple way. Since M is
separable, it is topologically generated by countably many elements a1, a2 . . ., that we may
assume to be contractions, that is ||ai|| ≤ 1, for all i. So we can define a metric on
Hom(M,RU ) as follows

d([π], [ρ]) = inf
u∈U(RU )

( ∞∑
n=1

1

22n
||π(an)− uρ(an)u∗||22

) 1
2

,

since the series in the right hand side is convergent. A priori, d is just a pseudo-metric,
but we can use Theorem 3.1 in [11] to say that approximately unitary equivalence is the
same as unitary equivalence in separable subalgebras of RU . This means that d is actually
a metric. Moreover, while this metric may depend on the generating set {a1, a2, . . .}, the
induced topology does not. It is indeed the point-wise convergence topology.

Hom(M,RU ) does not carry any evident vector space structure, but Nate Brown’s in-
tuition was that one can however do convex combinations inside Hom(M,RU ) in a formal
way. There is indeed an obvious (and wrong) way to proceed: given *homomorphisms
π, ρ : M → RU and 0 < t < 1, take a projection pt ∈ (π(M) ∪ ρ(M))′ ∩ RU such that
τ(pt) = t and define the “convex combination” tπ + (1− t)ρ to be

x 7→ π(x)pt + ρ(x)p⊥t .

Since the projection pt is chosen in (π(M)∪ρ(M))′, then tπ+ (1− t)ρ is certainly a new
unital morphism of M in RU . Unfortunately this procedure is not well defined on classes
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in Hom(M,RU ) and the reason can be explained as follows: if p ∈ RU is a projection, then
the corner pRUp is isomorphic to RU , by a well-known but not easy result. Thus the cut-
down pπ can be seen as a new morphism M → RU . The problem is that the isomorphism
pRUp → RU is not canonical and this reflects on the fact that convex combinations as
defined above are not well-defined on classes in Hom(M,RU ). The idea is to allow only
particular isomorphisms pRUp→ RU that are somehow fixed by conjugation by a unitary.
This is done by using the so-called standard isomorphisms, that represent Nate Brown’s
main technical innovation.

Definition 1.1. (N.P.Brown[1]) Let p ∈ RU be a projection. A standard isomorphism
θp : pRUp→ RU is any map gotten in the following way: lift p to a projection (pn) ∈ `∞(R)
such that τR(pn) = τRU (p), for all n ∈ N, fix isomorphisms θn : pnRpn → R and define θp
to be the isomorphism on the right hand side of the commutative diagram

`∞(pnRpn) //

⊕θn
��

pRUp

∼=
��

`∞(R) // RU

Definition 1.2. Given [π1], . . . , [πn] ∈ Hom(N,RU ) and t1, . . . , tn ∈ [0, 1] such that
∑
ti =

1, we define
n∑
i=1

ti[πi] :=

[
n∑
i=1

(
θ−1
i ◦ πi

)]
,

where θi : piR
Upi → RU are standard isomorphisms and p1, . . . , pn ∈ RU are orthogonal

projections such that τ(pi) = ti for i ∈ {1, . . . , n}.

We can explain in a few words why this procedure of using standard isomorphisms works.
It has been originally proven by Murray and von Neumann that there is a unique unital
embedding of Mn(C) into R up to unitary equivalence. Since R contains an increasing chain
of matrix algebras whose union is weakly dense, it follows that all unital endomorphisms of
R are approximately inner. Now, if we take an automorphism Θ of RU that can be lifted
(i.e., it is of the form (θn)n∈N where θn is an automorphism of `∞(R)), it follows that Θ
is just the conjugation by some unitary, when restricted to a separable subalgebras or RU .
Now, Nate Brown’s standard isomorphisms are exactly those isomorphisms from a corner
pRUp → RU that are liftable and therefore it is intuitively clear that after quotienting
out the unitary equivalence, the choice of the standard isomorphism should not affect the
result. The formalization of this rough idea leads to the following theorem.

Theorem 1.3. (N.P. Brown[1])
∑n

i=1 ti[πi] is well defined, i.e., independent of the pro-
jections pi, the standard isomorphisms θi and the representatives πi.

To prove this result we need some preliminary observations.
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Lemma 1.4. Let p, q ∈ R be projections of the same trace and θ : pRp→ qRq be a unital
*homomorphism, that is θ(p) = q. Then there is a sequence of partial isometries vn ∈ R
such that:

(1) v∗nvn = p,
(2) vnv

∗
n = q,

(3) θ(x) = limn→∞ vnxv
∗
n,

where the limit is taken in the 2-norm.

Proof. Since p, q have the same trace, we can find a partial isometry w such that w∗w = q
and ww∗ = p. Consider the unital endomorphism θw : pRp → pRp defined by θw(x) =
wθ(x)w∗. Since R is hyperfinite, every endomorphism is approximatively inner in the
2-norm, that is, we can find unitaries un ∈ pRp such that wθ(x)w∗ = limn→∞ unxu

∗
n.

Defining vn = w∗un completes the proof. �

Proposition 1.5. Let p, q ∈ RU be projections of the same trace, M ⊆ pRUp be a separable
von Neumann subalgebra and Θ : pRUp → qRUq be a unital *homomorphism. Assume
there exist projections (pi), (qi) ∈ `∞(R) which are lifts of p and q, respectively, such
that τR(pi) = τR(qi) = τRU (p), for all i ∈ N, and there exist unital *homomorphisms
θi : piRpi → qiRqi such that (θi(xi)) is a lift of Θ(x), whenever (xi) ∈ ΠpiRpi is a lift of
x ∈M .

Then there exists a partial isometry v ∈ RU such that:

(1) v∗v = p,
(2) vv∗ = q,
(3) Θ(x) = vxv∗, for all x ∈M .

Proof. We shall prove the proposition only in the case M = W ∗(X) is singly generated.
Let (xi) ∈ ΠpiRpi be a lift of X. By Lemma 1.4, we can find partial isometries vi ∈ R

such that v∗i vi = pi, viv
∗
i = qi and ||θi(xi) − vixiv∗i ||2 < 1/i. Observe that (vi) ∈ `∞(R)

drops to a partial isometry v ∈ RU with support p and range q. To show that Θ(X) = vXv∗,
fix ε > 0 and consider the set

Sε = {i ∈ N : ||θi(xi)− vixiv∗i ||2 < ε}.
This set contains the cofinite set {i ∈ N : i ≥ 1

ε} and therefore Sε ∈ U . �

Exercise 1.6. Prove Proposition 1.5 in the general case. (Hint: pick the vi’s arranging
inequalities of the form ||θi(Yi)−viYiv∗i ||2 < 1/i on a finite set of Yi’s corresponding to lifts
of a finite subset of a generating set of M).

Proof of Theorem 1.3. Assume σi : qiR
Uqi → RU are standard isomorphisms, where the

qi’s are orthogonal projections of trace ti and [ρi] = [πi]. By Proposition 1.5, applied to the
standard isomorphism σ−1

i ◦ θi : piR
Upi → qiR

Uqi, we can find partial isometries vi ∈ RU
such that v∗i vi = pi, viv

∗
i = qi and

vi
(
θ−1
i ◦ πi

)
(x)v∗i =

(
σ−1
i ◦ πi

)
(x), for all x ∈M.

Now since [πi] = [ρi], we can find unitaries ui such that ρi = uiπiu
∗
i . The proof is then

completed by the following exercise.
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Exercise 1.7. Show that u :=
∑
σ−1
i (ui)vi is a unitary conjugating

∑
θ−1
i ◦ πi over to∑

σ−1
i ◦ ρi.

�

2. Convex-like structures

Having a notion of convex combinations, it is natural to ask whether it verifies the
obvious properties that it would satisfy if Hom(M,RU ) were a convex subset of a Banach
space.

An axiomatization of convex subsets of a Banach space has been proposed by Nate
Brown himself through the notion of convex-like structures. The proof that every convex-
like structure is in fact a convex subset of a Banach space has been given by Capraro and
Fritz in [3].

Let (X, d) be a complete and bounded metric space. Denote by X(n) = X × · · · ×X the
n-fold Cartesian product and let Probn be the set of probability measures on the n-point
set {1, 2, . . . , n}, endowed with the `1-metric ‖µ− µ̃‖ =

∑n
i=1 |µ(i)− µ̃(i)|.

Definition 2.1. (N.P.Brown[1]) We say (X, d) has a convex-like structure if for every

n ∈ N and µ ∈ Probn there is a continuous map γµ : X(n) → X such that

(1) for each permutation σ ∈ Sn and x1, . . . , xn ∈ X,

γµ(x1, . . . , xn) = γµ◦σ(xσ(1), . . . , xσ(n));

(2) if x1 = x2, then γµ(x1, x2, . . . , xn) = γµ̃(x1, x3, . . . , xn), where µ̃ ∈ Probn−1 is given
by µ̃(1) = µ(1) + µ(2) and µ̃(j) = µ(j + 1) for 2 ≤ j ≤ n− 1;

(3) if µ(i) = 1, then γµ(x1, . . . , xn) = xi;
(4) There is a constant C such that for all x1, . . . , xn ∈ X and for all ν, ν̃ ∈ Probn, one

has

d(γµ(x1, . . . , xn), γµ̃(x1, . . . , xn)) ≤ C‖µ− µ̃‖.
(5) For all x1, . . . , xn, y1, . . . , yn ∈ X and for all ν ∈ Probn, one has

d(γµ(x1, . . . , xn), γµ(y1, . . . , yn)) ≤
n∑
i=1

µ(i)d(xi, yi);

(6) for all ν ∈ Prob2, µ ∈ Probn, µ̃ ∈ Probm and x1, . . . , xn, x̃1, . . . , x̃m ∈ X,

γν(γµ(x1, . . . , xn), γµ̃(x̃1, . . . , x̃m)) = γη(x1, . . . , xn, x̃1, . . . , x̃m),

where η ∈ Probn+m is given by η(i) = ν(1)µ(i), if 1 ≤ i ≤ n, and η(j + n) =
ν(2)µ̃(j), if 1 ≤ j ≤ m.

Remark 2.2. To understand this definition we make a short parallelism with the usual
notion of convex combinations in a Banach space equipped with a norm || · ||. An element
µ ∈ Probn is uniquely represented by a n-tuple (t1, . . . , tn) of positive real numbers such
that

∑
ti = 1. The element γµ(x1, . . . , xn) in Definition 2.1 is exactly t1x1 + . . . + tnxn.
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It is now clear that the first axiom of a convex-like structure is the commutative property.
The second axiom just formalizes the following associative property:

t1x1 + t2x1 + t3x3 + . . .+ tnxn = (t1 + t2)x1 + t3x3 + . . .+ tnxn.

The third axiom formalizes the following property

0 · x1 + . . . 0 · xi−1 + 1 · x1 + 0 · xi+1 + . . .+ 0 · xn = xi.

The fourth axiom formalizes the following inequality:

||(t1x1 + . . . tnxn)− (s1x1 + . . .+ snxn)|| ≤ max
i
||xi||

n∑
i=1

|ti − si|,

where max ||xi|| in our case is uniformly bounded, since the metric space is supposed to be
bounded. The fifth axiom corresponds to the following inequality:

||(t1x1 + . . .+ tnxn)− (t1y1 + . . .+ tnyn)|| ≤
∑
|ti|d(xi, yi).

The last axiom requires the following algebraic property

α(t1x1 + . . .+ tnxn) + (1− α)(s1y1 + . . .+ smym) =

= (αt1)x1 + . . .+ (αtn)xn + ((1− α)s1)y1 + . . .+ ((1− α)sm)ym.

The proof that Hom(M,RU ) has a convex-like structure will be given in the next section.
Here we prove the representation theorem, stating that convex-like structures are exactly
the convex and bounded subsets of a Banach space.

Theorem 2.3. (Capraro-Fritz[3]) Every convex-like structure is isometrically and affinely
embeddable into a Banach space.

This result already allows to avoid all technicalities in Section 2. of Brown’s paper. It
can be also useful in other contexts, because of its generality. For instance, it was used by
Liviu Păunescu to prove that his own convex-like structure on the set of sofic embeddings
embeds into a vector space (see [9]).

The proof of Theorem 2.3 will be divided in several steps.

Definition 2.4 ([5]). A convex space is given by a set X and a family of binary operations
{ccλ}λ∈[0,1] on X such that

(cs.1) cc0(x, y) = x, ∀x, y ∈ X;
(cs.2) ccλ(x, x) = x, ∀x ∈ X, λ ∈ [0, 1];
(cs.3) ccλ(x, y) = cc1−λ(y, x), ∀x, y ∈ X, λ ∈ [0, 1];
(cs.4) ccλ(ccµ(x, y), z) = ccλµ(x, ccν(y, z)), ∀x, y, z ∈ X, λ, µ ∈ [0, 1]; where ν is arbi-

trary if λ = µ = 1 and ν = λ(1−µ)
1−λµ otherwise.

If µ = (λ, 1− λ) is a measure on the 2-point set, we write γλ,1−λ instead of γµ.

Lemma 2.5. A convex-like structure is also a convex space, by setting

ccλ(x, y) = γλ,1−λ(x, y) . (1)
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The converse of this lemma is also true, but the proof is more involved (see [3], Theorem
3).

Proof of Lemma 2.5. We prove the lemma axiom-by-axiom.

(cs.1) We have cc0(x, y) = γ0,1(x, y) = y, thanks to Brown’s axiom 3.
(cs.2) We have ccλ(x, x) = γλ,1−λ(x, x), thanks to Brown’s axiom 2.
(cs.3) We have

ccλ(x, y) = γλ,1−λ(x, y) = γ1−λ,λ(y, x) = cc1−λ(y, x),

thanks to Brown’s axiom 1.
(cs.4) This is implied by the previous axioms when λ = µ = 1, so it is enough to treat the

case λµ 6= 1. We will evaluate ccλ(ccµ(x, y), z) and ccλµ(x, ccλ(1−µ)
1−λµ

(y, z)) separately

and obtain two identical expressions. Using axiom 6, we have

ccλ(ccµ(x, y), z) = γη(x, y, z),

where η(1) = λµ, η(2) = λ(1−µ) and η(3) = 1−λ. On the other hand, the same 6
also implies

ccλµ(x, ccλ(1−µ)
1−λµ

(y, z)) = γη(x, y, z),

with the same distribution η ∈ Prob3.

�

Lemma 2.6. If the equation

ccλ(y, x) = ccλ(z, x)

holds for some x, y, z ∈ X and λ ∈ (0, 1), then it also holds for all λ ∈ (0, 1).

Proof. Let us write λ0 for the original value for which the equation holds. Then for all
λ < λ0,

ccλ(y, x) = ccλ/λ0(ccλ0(y, x), x) = ccλ/λ0(ccλ0(z, x), x) = ccλ(z, x),

by (cs.4) and (cs.2), so that the equation is also true in that case. Hence it is enough to

find a sequence (λn)n∈N with λn
n→∞−→ 1 for which the equation holds. We construct such a

sequence by defining λn+1 = 2λn
1+λn

, for which an inductive argument shows the validity of
the equation:

ccλn+1(y, x)

= ccλn/(1+λn)(y, ccλn(y, x))

= ccλn/(1+λn)(y, ccλn(z, x))

= ccλn/(1+λn)(z, ccλn(y, x))

= ccλn/(1+λn)(z, ccλn(z, x))

= ccλn+1(z, x) .

�
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Proposition 2.7. Let X be a convex-like structure. Then the following cancellative prop-
erty is verified:

ccλ(x, y) = ccλ(x, z) with λ ∈ (0, 1) =⇒ y = z .

Proof. By the previous lemma, we know that if γλ,1−λ(x, y) = γλ,1−λ(x, z) holds for some
λ ∈ (0, 1), then it holds for all λ ∈ (0, 1). But then, we get from 4, for any λ > 0,

d(y, z) ≤ d(y, γλ,1−λ(x, y)) + d(z, γλ,1−λ(x, z)) ≤ λd(x, y) + λd(x, z) = λ [d(x, y) + d(x, z)]

Since λ was arbitrary, we conclude d(y, z) = 0, and hence y = z. �

Theorem 2.8. Let X be a convex-like structure. Then there is a linear embedding of X
into some vector space.

Proof. By the previous results, we can see a convex-like structure as a convex space with
verifies the cancellative property in Proposition 2.7. Such spaces are linearly embeddable
into vector spaces by the Stone representation theorem [12]. �

Detailed about Stone’s representation theorem can be found in [3], Theorem 4. Roughly
speaking, one considers the free vector space generated by the elements of the convex space
modded out by obvious equivalence relations. The cancellative property implies that the
original convex space embeds faithfully into this quotient.

To prove that such an embedding is isometric with respect to a natural norm on this
universal vector space we need to work a bit more.

Lemma 2.9. Let (X, d) be a metric space which is a convex subset X ⊆ E of some vector
space E such that

d(λy + (1− λ)x, λz + (1− λ)x) ≤ λd(y, z), ∀x, y ∈ X, λ ∈ [0, 1], (2)

holds. Then there is a norm || · || on E such that for all x, y ∈ X,

d(x, y) = ||x− y|| .

Proof. As a special case, (2) gives for z = x,

d(λy + (1− λ)x, x) ≤ λd(y, x),

which yields, in combination with the triangle inequality,

d(y, x)

≤ d(y, λy + (1− λ)x) + d(λy + (1− λ)x, x)

≤ (1− λ)d(y, x) + λd(y, x) .

Since the term on the left-hand side equals the term on the right-hand side, we deduce that
both inequalities are actually equalities. In particular, the metric is “uniform on lines” in
the sense that

d(x, (1− λ)x+ λy) = λd(x, y) ∀x, y ∈ X, λ ∈ [0, 1] .
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x0

x1

y1

y0

xε

yε

zε

Figure 1. Illustration of the proof of lemma 2.9.

Now in order to prove the assertion, it needs to be shown that d is translation-invariant
in the following sense: suppose that x0, x1, y0, y1 ∈ X are such that

y1 − x1 = y0 − x0 ,

then d(x1, y1) = d(x0, y0). See figure 2 for an illustration. For ε ∈ (0, 1), we will also
consider the points

xε = εx1 + (1− ε)x0 , yε = εy1 + (1− ε)y0 , zε = (1− ε)xε + εyε = εy1 + (1− ε)x0 .

Then by the assumption (2),

d(xε, zε) = d (εx1 + (1− ε)x0, εy1 + (1− ε)x0) ≤ εd(x1, y1) .

By the definition of zε and the uniformity of d on the line connecting zε with xε and yε,
we have

d(xε, yε) = ε−1d(xε, zε) ≤ d(x1, y1) .

Upon taking the limit ε→ 0 we therefore arrive at

d(x0, y0) ≤ d(x1, y1) ,

and the other inequality direction is then clear by symmetry, so that d is indeed translation
invariant.

Now d can be uniquely extended to a translation-invariant metric on the affine hull of X.
Assuming 0 ∈ X without loss of generality, this affine hull equals the linear hull, lin(X),
and then the translation-invariant metric on lin(X) comes from a norm. If necessary, this
norm can be extended from the subspace lin(X) to all of E. �

Now we have assembled all the ingredients for the main theorem of this section.

Theorem 2.10. Every convex-like structure is affinely and isometrically isomorphic to a
closed convex subset of a Banach space.
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Proof. Since the inequality (2) is an instance of the metric compatibility axiom 4, this is
a direct consequence of corollary 2.8 and lemma 2.9 and the fact that every norm space
embeds into its completion, which is a Banach space. Closedness then follows from the
requirement that a convex-like structure is assumed to be complete. �

Theorem 2.10 tells us that we can regard Hom(M,RU ) as a convex, closed and bounded
subset of a Banach space. Nevertheless, the construction passes through Stone’s represen-
tation theorem, that is very abstract. If one wants to use this embedding to find out new
properties of Hom(M,RU ), one needs a more concrete realization. Such concrete realization
will be given in the next section.

3. Concrete embedding of Hom(M,RU ) into a Banach space

Nate Brown proved that Hom(M,RU ) has a convex-like structure given by the convex
combinations defined in Definition 1.2. His proof is quite involved and does not solve
the problem of finding a concrete linear and isometric embedding of Hom(M,RU ) into
a Banach space. In this section we build directly this embedding, using a construction
appeared in [2].

First of all we need to recall the definition of tensor product of von Neumann algebras.
Let H1, . . . ,Hn be Hilbert spaces with inner products� ·, · �1, . . . ,� ·, · �n, respectively.
We can define an inner product on the algebraic tensor product of the Hi’s as follows

� ξ1 ⊗ . . .⊗ ξn, η1 ⊗ . . .⊗ ηn �=� ξ1, η1 �1 · . . . · � ξn, ηn �n

for all ξi, ηi ∈ Hi. The completion of the algebraic tensor product of the Hi’s with respect
to this inner product is a Hilbert space, called tensor product of the Hi’s and denoted
by H1 ⊗ . . . ⊗Hn. Now, let M1, . . . ,Mn be von Neumann algebras acting on H1, . . . ,Hn,
respectively. Let M0 be the *algebra acting on H1⊗ . . .⊗Hn of all finite sums of operators
of the form x1 ⊗ . . . ⊗ xn, with xi ∈ Mi. This is a *subalgebra of B(H1 ⊗ . . . ⊗Hn) and
therefore its strong closure is a von Neumann algebra. This von Neumann algebra is called
tensor product of the Mi’s and it is denoted by M1⊗̄ . . . ⊗̄Mn.

In the sequel, we will mostly interested in a particular case, namely, B(H)⊗̄RU , where
H is a separable Hilbert space. Let eii ∈ B(H) be a countable set of pairwise orthogonal
one-dimensional projections such that

∑
eii = 1 and let vjk be partial isometries mapping

ejj to ekk. Define fjk = ejk⊗1 ∈ B(H)⊗̄RU . Such a system {fij} is called system of matrix

units for B(H)⊗̄RU . Now, B(H)⊗̄RU is a II∞-factor1 and then we can consider a faithful,
semi-finite, weakly-continuous non-zero trace on B(H)⊗̄RU . It is in fact a very basic result
in Operator Algebras that II∞-factors have, up to multiplication by a positive scalar, a
unique faithful, semi-finite, weakly-continuous non-zero trace. Therefore, we may choose a
the trace τ∞ in such a way that τ(fii) = 1, for all i. Now let M be a separable II1-factor

1II∞-factors can be defined intrinsecally. However, it is a basic result in Operator Theory that they can
be always written as a tensor product between B(H) and some II1-factor.
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which embeds into RU and denote by Hom+(M,B(H)⊗̄RU ) the set of all morphisms (nec-
essarily non-unital) φ : M → B(H)⊗̄RU such that τ∞(φ(1)) < ∞ modulo unitary equiv-
alence. Observe that Hom(M,RU ) can be regarded as a subset of Hom+(M,B(H)⊗̄RU )
just identifying [π] ∈ Hom(M,RU ) with [π̃] ∈ Hom+(M,B(H)⊗̄RU ), where π̃ is defined
by the following conditions:

fij π̃fij =

{
π, if (i, j) = (1, 1);
0, otherwise.

Basically, we are defining π̃ to be the morphism which is equal to π in the first block of
the infinite matrix representing B(H)⊗̄RU and zero elsewhere.

So we have an embedding Hom(M,RU ) ↪→ Hom+(M,B(H)⊗̄RU ). We want to construct
a concrete embedding of Hom+(M,B(H)⊗̄RU ) into a Banach space and show that this
embedding agrees with the embedding Hom(M,RU ) ↪→ Hom+(M,B(H)⊗̄RU ).

The sum on Hom+(M,B(H)⊗̄RU ) is pretty easy to define and reflects one of the reasons
why it is important to work inside a II∞-factor. In such factors, indeed, the following
operation is possible: given two projections p, q ∈ B(H)⊗̄RU such that τ∞(p) < ∞ and
τ∞(q) < ∞, there is a unitary u such that upu∗ is orthogonal to q. This allows to define
the sum in Hom+(M,B(H)⊗̄RU ) as follows.

Definition 3.1. Let [φ], [ψ] ∈ Hom+(M,B(H)⊗̄RU ), then φ(1) and ψ(1) are finite pro-
jections and thus there exists a unitary u ∈ U(B(H)⊗̄RU ) such that uφ(1)u∗ ⊥ ψ(1). We
define [φ] + [ψ] := [uφu∗ + ψ].

Exercise 3.2. Prove that the sum is well-defined; that is,

(1) uφu∗ + ψ is still a morphism from M to B(H)⊗̄RU with finite trace.
(2) The class [uφu∗+ψ] does not depend on u with the property that uφ(1)u∗ ⊥ ψ(1).
(3) The class [uφu∗ + ψ] does not depend on φ and ψ taken in their own classes.

Exercise 3.3. Show that Hom+(M,B(H)⊗̄RU ) is a commutative monoid.

Definition 3.4. A monoid (M, ·) is called left-cancellative if the condition a · b = a · c,
implies b = c. Analogously one defines right-cancelative monoids. A monoid is called
cancelative if it is both right- and left-cancelative.

To prove that Hom+(M,B(H)⊗̄RU ) is cancellative, we need a preliminary result. Let
M∞ denote the subset of B(H)⊗̄RU of those elements x of finite trace.

Lemma 3.5. Given a morphism φ : N → M∞ and projections p, q ∈ φ(N)′ ∩M∞, with
p, q ≤ φ(1). The following are equivalent:

(1) There exists a partial isometry v ∈ φ(1)M∞φ(1) such that vv∗ = q, v∗v = p and
vφ(x)v∗ = qφ(x), for all x ∈ N .

(2) p ∼ q in φ(N)′ ∩ φ(1)M∞φ(1).
(3) [pφ] = [qφ], where pφ : N →M is defined by x→ pφ(x).

Proof. 1)⇒ 2). It suffices to show that v commutes with φ(x), for all x ∈ N . Indeed
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v∗φ(x)

= v∗qφ(x)

= v∗vφ(x)v∗

= pφ(x)v∗

= φ(x)v∗

2) ⇒ 3). Choose partial isometries v ∈ φ(N)′ ∩ φ(1)M∞φ(1) and w ∈ φ(N)′ ∩
φ(1)M∞φ(1) such that v∗v = p, vv∗ = q, w∗w = p⊥ and ww∗ = q⊥. (It is pos-
sible to find w since φ(N)′ ∩ φ(1)M∞φ(1) is a finite von Neumann algebra.) Hence
u = v + w ∈ φ(N)′ ∩ φ(1)M∞φ(1) is a unitary and

upφ(x)u∗ = upu∗φ(x) = qφ(x).

Extending u to a unitary in B(H)⊗̄M we see [pφ] = [qφ].
3) ⇒ 1). Choose a unitary u ∈ B(H)⊗̄M such that upφ(x)u∗ = qφ(x), for all x ∈ N .

Define v = up and, using the assumption that p, q ≤ φ(1), one can check this does the
trick. �

Proposition 3.6. Hom(N,B(H)⊗̄RU ) is a cancellative monoid.

Proof. We prove that Hom(N,B(H)⊗̄RU ) is left-cancellative. The proof of right-cancellation
is similar. Let ρ, φ, ψ such that

[ρ] + [φ] = [ρ] + [ψ].

We may assume that φ(1) = ψ(1) (since they have the same trace) and φ(1) ⊥ ρ(1).
Let u ∈ M⊗̄B(H) be a unitary such that ρ + φ = u(ρ + ψ)u∗ and set p = ρ(1) and
q = uρ(1)u∗. Then p(ρ + φ) = ρ and q(ρ + φ) = q(u(ρ + ψ)u∗) = uρu∗. It follows that
[p(ρ+φ)] = [q(ρ+φ)] and so, by Lemma 3.5, p and q are Murray-von Neumann equivalent
inside ((ρ + φ)(N))′ ∩ (ρ + φ)(1)M(ρ + φ)(1); hence, so are (ρ + φ)(1) − p = φ(1) and
(ρ+ φ)(1)− q = uψ(1)u∗. Therefore, using once again Lemma 3.5, we get

[φ] = [φ(1)(ρ+ φ)] = [uψ(1)u∗(u(ρ+ ψ)u∗)] = [uψu∗] = [ψ].

�

We now recall the construction of the Grothendieck group of a commutative monoid
(M, ·). Consider in M ×M the equivalence relation ∼ defined by

(m1, n1) ∼ (m2, n2) iff there is m ∈M such that m1 · n2 ·m = m2 · n1 ·m

In the quotient set (M ×M)/ ∼ define the operation, still denoted by ·, setting

[(m1, n1)]∼ · [(m2, n2)]∼ := [(m1 ·m2, n1 · n2))]∼

Exercise 3.7. (1) Prove that (M ×M)/ ∼ is a group. It will be denoted by G(M).
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(2) Suppose M is cancelative and denote by 0 its neutral element. Prove that the
mapping M → G(M) defined by m→ [(m, 0)]∼ is a monoidal embedding.

(3) Give an example of a monoid which does not embed into its Grothendiek group.

The use of the subscript + in the notation Hom+(M,B(H)⊗̄RU ) should now be clearer:
Proposition 3.6 and Exercise 3.7 tell that this space embeds into its Grothendieck group in
some sense as the positive part. In fact, we now define in Hom+(M,B(H)⊗̄RU ) the scalar
product by a positive scalar and then we will extend everything in the Grothendieck group.

The construction is quite involved and here we give only a detailed sketch. The first
thing to do is to consider only a subclass of standard isomorphisms. This restriction does
not create any problem since we have seen that the convex-like structure on Hom(M,RU )
is independent of the choice of the standard isomorphisms.

To this end, first recall that there is an isomorphism Φ : R⊗̄R→ R. Given a free ultrafil-
ter U on the natural numbers, let ΦU be the component-wise isomorphism (R⊗̄R)U → RU

induced by Φ.

Definition 3.8. Let p ∈ RU be a projection such that Φ−1
U (p) has the form p̃ ⊗ 1 =

(p̃n⊗ 1)n ∈ (R⊗R)U , with τ(p̃n) = τ(p̃) = τ(p). Only throughout this section, a standard
isomorphism θ : RU → pRUp will be any isomorphism gotten in the following way. Fix
isomorphisms αn : R→ p̃nRp̃n and let θn := αn ⊗ Id : R⊗̄R→ p̃nRp̃n⊗̄R. Define θ to be
the isomorphism on the right hand side of the following diagram

`∞(R⊗̄R) //

⊕Nθn
��

(R⊗̄R)U //

Uθ
��

RU

θ
��

`∞((p̃n ⊗ 1)(R⊗̄R)(p̃n ⊗ 1)) // (p̃⊗ 1)(R⊗̄R)U (p̃⊗ 1) // pRUp

where the horizontal left-hand side arrows are the projections onto the quotient, the hor-
izontal right-hand side arrows are the ultrapower isomorphisms ΦU , and the isomorphism

Uθ is the one obtained by imposing commutativity on the left-half of the diagram.

The following Lemma is very similar to Proposition 1.5 and it is one of the main technical
tools that we need.

Lemma 3.9. Let p, q ∈ RU be projections of the same trace as needed to define standard
isomorphisms θp, θq. For all separable von Neumann subalgebras M1 ⊆ RU , there is a
partial isometry v1 ∈ RU such that v∗1v1 = p, v1v

∗
1 = q and

v1θp(x)v∗1 = θq(x) for all x ∈M1

Proof. With the obvious notation, consider the following commutative diagram
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`∞((p̃n ⊗ 1)(R⊗̄R)(p̃n ⊗ 1))) //

⊕θ−1
pn

��

(p̃⊗ 1)(R⊗̄R)U (p̃⊗ 1) //

(Uθp)−1

��

pRUp

θ−1
p

��
`∞(R⊗̄R) //

⊕Nθqn
��

(R⊗̄R)U //

Uθq
��

RU

θq
��

`∞((q̃n ⊗ 1)(R⊗̄R)(q̃n ⊗ 1)) // (q̃ ⊗ 1)(R⊗̄R)U (q̃ ⊗ 1) // qRUq

Consider Φ−1
U (M1) ⊆ (R⊗̄R)U . In the left-half of the previous diagram, we may apply

Proposition 1.5 to Θ =U θq ◦ (Uθp)
−1 and M = Φ−1

U (M1), since all isomorphisms act only

on the hyperfinite II1-factor R. Thus, there is a partial isometry v ∈ (R⊗̄R)U such that
v∗v = p̃⊗ 1, vv∗ = q̃ ⊗ 1 and

v(Uθp(x))v∗ =U θq(x), for all x ∈ Φ−1
U (M1). (3)

Define v1 = ΦU (v) and one can verify that it works. �

Let t ∈ (0, 1) and let pt ∈ RU be a projection of trace t as needed to define a standard
isomorphism θt : RU → ptR

Upt. Let us recall the construction of a trace-scaling automor-
phism Θt of B(H)⊗̄RU , since it will be helpful in the proof of Proposition 3.12. More
details can be found in [7], Proposition 13.1.10.

Let {ejj} ⊆ B(H) be a countable family of orthogonal one-dimensional projections
such that

∑
ejj = 1 and let ejk be partial isometries mapping ejj to ekk. Define fjk =

ejk ⊗ 1 ∈ B(H)⊗̄RU . We know that f11(B(H)⊗̄RU )f11 is *isomorphic to RU and that τ∞
is normalized in such a way that τ∞(f11) = 1. Thus we can look at pt as a projection in
f11(B(H)⊗̄RU )f11 with trace t and, for simplicity, let us denote it by g11. Let gjj be a
countable family of orthogonal projections, each of which is equivalent to g11, such that∑
gjj = 1 ∈ B(H)⊗̄RU and extend the family {gjj} to a system of matrix units {gjk}

of B(H)⊗̄RU adding appropriate partial isometries. Now, for any algebra A ⊂ B(K),
denote by ℵ0 ⊗ A the algebra of countably infinite matrices with entries in A that define
bounded operators on ⊕NK ∼= H ⊗ K. The isomorphism θt : RU → ptR

Upt can be seen
as an isomorphism θt : f11(B(H)⊗̄RU )f11 → pt(B(H)⊗̄XU )pt and then it gives rise to an
isomorphism

ℵ0 ⊗ θt : ℵ0 ⊗ (f11(B(H)⊗̄RU )f11)→ ℵ0 ⊗ (pt(B(H)⊗̄RU )pt).

Now, let G be the matrix in ℵ0⊗ (f11(B(H)⊗̄RU )f11) having the unit in the position (1, 1)
and zeros elsewhere. Then (ℵ0⊗ θt)(G) is the matrix in ℵ0⊗ (pt(B(H)⊗̄RU )pt) having the
unit in the position (1, 1) and zeros elsewhere. Now, take isomorphisms

φ1 : B(H)⊗̄RU → ℵ0⊗(f11(B(H)⊗̄RU )f11), φ2 : B(H)⊗̄RU → ℵ0⊗(pt(B(H)⊗̄RU )pt),

such that φ1(f11) = G and φ2(g11) = (ℵ ⊗ θt)(G). Define

Θt = φ−1
2 ◦ (ℵ0 ⊗ θt) ◦ φ1.

It is easily checked that τ∞(Θt(x)) = tτ∞(x), for all x.
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Remark 3.10. For the sequel, it is important to stress the fact that Θt is nothing but the
isomorphism obtained by writing B(H)⊗̄RU as an algebra of countably infinite matrices
and letting θt act on each component. Therefore, if we want to prove that two isomorphisms

Θ
(1)
t and Θ

(2)
t constructed in such a fashion are unitarily equivalent, it suffices to find

unitaries mapping θ
(1)
t to θ

(2)
t and the matrix units used in the first representation of

B(H)⊗̄RU as a matrix algebra to the matrix units used in the second representation.

Definition 3.11. Let t ∈ (0, 1] and [φ] ∈ Hom+(N,B(H)⊗̄RU ).We define

t[φ] = [Θt ◦ φ].

Remark 3.10 is important because now we need to prove that the definition of t[φ]
depends only on t and [φ] and is independent of Θt.

Proposition 3.12. Let t ∈ (0, 1], p
(i)
t ∈ RU , i = 1, 2, be two projections of trace t and

θ
(i)
t : RU → p

(i)
t R

Up
(i)
t be two standard isomorphisms. Then Θ

(1)
t ◦ φ is unitarily equivalent

to Θ
(2)
t ◦ φ.

Proof. Let us start with an observation. The image φ(N) a priori belongs to B(H)⊗̄RU , but
since τ∞(φ(1)) <∞, we can twist it by a unitary and suppose that φ(N) ⊆Mn(C)⊗RU ,
for some n > τ∞(φ(1)). Now, for all j = 1, . . . , n, let

Mj = (ejj ⊗ 1)φ(N)(ejj ⊗ 1) ⊆ (ejj ⊗ 1)(B(H)⊗̄RU )(ejj ⊗ 1) ∼= RU .

Since p
(1)
t is equivalent to p

(2)
t and (p

(1)
t )⊥ is equivalent to (p

(2)
t )⊥, in Lemma 3.9 we may

find a unitary ui ∈ XU such that

(ejj ⊗ uj)((ejj ⊗ θ(1)
t )(x))(ejj ⊗ uj) = (ejj ⊗ θ(2)

t )(x), for all x ∈Mj ,

where ejj⊗θ(1)
t stands for the endomorphism obtained letting θ

(1)
t act only on fjj(B(H)⊗̄RU )fjj .

Since the partial isometries ejj ⊗ uj act on orthogonal subspaces, we may extend them all
together to a unitary u ∈ B(H)⊗̄RU such that

u((ejj ⊗ θ(1)
t )(x))u∗ = (ejj ⊗ θ(2)

t )(x), for all j = 1, . . . , n and for all x ∈Mj .

Set en =
∑n

j=1 ejj . We have

u((en ⊗ θ(1)
t )(x))u∗ = (en ⊗ θ(2)

t )(x), for all x ∈ (en ⊗ 1)φ(N)(en ⊗ 1) = φ(N).

Now observe that the matrix units
{
f

(1)
jk

}
and

{
f

(2)
jk

}
used to construct Θ

(1)
t and Θ

(2)
t are

unitarily equivalent, since the projections on the diagonal have the same trace. Therefore,

also the matrix units
{
uf

(1)
jk u

∗
}

and
{
f

(2)
jk

}
are unitarily equivalent. Let w ∈ B(H)⊗̄RU

be a unitary such that

w(uf
(1)
jk u

∗)w∗ = f
(2)
jk , for all j, k ∈ N.
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The unitary w then twists the matrix units uf
(1)
jk u

∗ into the matrix units f
(2)
jk and it twists

u((en ⊗ θ(1)
t )(x))u∗ to (en ⊗ θ(2)

t )(x), for all x ∈ φ(N). Therefore, by Remark 3.10,

wuΘ
(1)
t (x)u∗w∗ = Θ

(2)
t (x), for all x ∈ φ(N),

as required. �

Recall that we have already fixed a *isomorphism Φ : R⊗̄R → R and we have denoted
by ΦU : (R⊗̄R)U → RU the induced component-wise *isomorphism.

Definition 3.13. Let φ : N → (R⊗̄R)U . For each x ∈ N , let (Xφ
i ) ∈ `∞(R⊗̄R) be a lift

of φ(x). Define 1⊗ φ through the following diagram

(1⊗Xφ
n)n ∈ `∞(R⊗̄R⊗̄R) //

⊕N(1⊗Φ)

��

(R⊗̄R⊗̄R)U

(1⊗Φ)U
��

`∞(R⊗̄R) // (R⊗̄R)U

i.e. (1⊗ φ)(x) is the image of the element (1⊗Xφ
n)n ∈ `∞(R⊗̄R⊗̄R) down in (R⊗̄R)U .

Exactly as in Lemma 3.2.3 in [1], one gets the following

Lemma 3.14. For all φ : N → (R⊗̄R)U , one has [1⊗ φ] = [φ].

Lemma 3.15. Let θs, θt be two standard isomorphisms. Then

θs ◦ θt : RU → θs(pt)R
Uθs(pt)

is still a standard isomorphism.

Proposition 3.16. For all s, t > 0 and [φ], [ψ] ∈ Hom(N, (XU )∞), the following properties
are satisfied:

(1) 0[φ] = 0,
(2) 1[φ] = [φ],
(3) s(t[φ]) = (st)[φ],
(4) s([φ] + [ψ]) = s[φ] + s[ψ],
(5) if s+ t ≤ 1, then (s+ t)[φ] = s[φ] + t[φ].

Proof. The first two properties are trivial. The third property follows by Lemma 3.15 and
Proposition 3.12. The fourth property can be easily proved by direct computation. Let
us prove the fifth property. Fix n > (s + t)τ∞(φ(1)) and twist φ by a unitary in such a
way that φ(N) ⊆Mn(C)⊗RU = (Mn(C)⊗X)U , since Mn(C) is finite dimensional. Now,
Mn(C) has a unique unital embedding into R up to unitary equivalence and therefore we
may suppose that φ(N) ⊆ (R⊗̄R)U and we may apply the construction in Definition 3.13
and Lemma 3.14 to replace [φ] with [1⊗φ]. Now we have the freedom to choose orthogonal
projections of the form

ps ⊗ 1⊗ 1, pt ⊗ 1⊗ 1, (ps + pt)⊗ 1⊗ 1 ∈ (R⊗̄R⊗̄R)U ,
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and use these projections to define standard isomorphisms. It is then clear that

Θs ◦ (1⊗ φ) + Θt ◦ (1⊗ φ) = Θt+s ◦ (1⊗ φ),

which implies that [Θs ◦ φ] + [Θt ◦ φ] = [Θs+t ◦ φ]; i.e. s[φ] + t[φ] = (s+ t)[φ]. �

Therefore, we are in the following situation. We have a commutative cancelative monoid
G+ equipped with an action [0, 1] y G+ that verifies the properties of the proposition
above. It is now easy to check that the Grothendieck group has then a canonical structure
of a vector space (see Appendix in [2]). So we get a vector space that we denote by
Hom(M,B(H)⊗̄RU ). Moreover, the multiplication by a scalar is defined in such a way that
the canonical embedding of Hom(M,RU ) into Hom(M,B(H)⊗̄RU ) is affine, concluding our
sketch of the construction of an explicit embedding of Hom(M,RU ) into a vector space.

Theorem 3.17. Hom(M,RU ) embeds affinely into the vector space Hom+(M,B(H)⊗̄RU ).

4. Extreme points of Hom(M,RU )

In this section we move back to the study of the convex set Hom(M,RU ). Given a
separable II1-factor M that embeds into RU , Sorin Popa asked whether there is always
another representation π such that π(M)′ ∩RU is a factor. It turns out that this problem
is equivalent to a geometric problem on Hom(M,RU ).

Theorem 4.1. (Nate Brown) Let π : M → RU be a representation. Then π(M)′ ∩ RU
is a factor if and only if [π] is an extreme point of Hom(M,RU ).

In this section we prove only the “only if”: if [π] is an extreme point, then π(M)′ ∩RU
is a factor.

Definition 4.2. We define the cutdown of a representation π : M → RU by a projection
p ∈ π(M)′ ∩RU to be the map M → RU defined by x→ θp(pπ(x)), where θp : pRUp→ RU

is a standard isomorphism.

Lemma 3.3.3 in [1] shows that this definition is independent by the standard isomor-
phism, hence we can denote it by [πp].

Lemma 4.3. Given a representation π : M → RU and projections p, q ∈ π(M)′ → RU of
the same trace, the following are equivalent:

(1) [πp] = [πq],
(2) p and q are Murray-von Neumann equivalent inside π(M)′ ∩RU , that is, there is a

partial isometry v ∈ π(M)′ ∩RU such that v∗v = p and vv∗ = q.
(3) there exists v ∈ RU such that v∗v = p, vv∗ = q and vπ(x)v∗ = qπ(x), for all x ∈M .

Exercise 4.4. Prove the equivalence between (2) and (3) in Lemma 4.3.

Exercise 4.5. Given projections p, q and a partial isometry v such that v∗v = p and
vv∗ = q, show that there exist lifts (pn), (qn), (vn) ∈ `∞(R) such that pn, qn are projections
of the same trace as p and v∗nvn = pn and vnv

∗
n = qn, for all n ∈ N.
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Proof of (3)⇒ (1). Let pn, qn, vn as in Exercise 4.5 and fix isomorphisms θn : pnRpn → R
and γn : qnRqn → R and use them to define standard isomorphisms θ : pRUp → RU and
γ : qRUq → RU and use them to define πp and πq. The isomorphism on the right hand side
of the following diagram2 is liftable by construction and so Proposition 1.5 can be applied
to it, giving unitary equivalence between πp and πq.

`∞(R) //

⊕θ−1
n

��

RU

θ−1
��

`∞(pnRpn) //

⊕Advn
��

pRUp

Adv
��

`∞(qnRqn) //

⊕γn
��

qRUq

γ

��
`∞(R) // RU

�

Exercise 4.6. Use a similar idea to prove the implication (1)⇒ (3).

We recall that a projection p ∈ M is called minimal if pMp = C1. A von Neumann
algebra without minimal projections is called diffuse.

Exercise 4.7. Let M be a diffuse von Neumann algebra with the following property: every
pair of projections with the same trace are Murray-von Neumann equivalent. Show that
M is factor. (Hint: show that every central projection is minimal).

Proof of the “only if” of Theorem 4.1. Let [π] be an extreme point of Hom(M,RU ) and
p ∈ π(M)′ ∩RU . Since

[π] = τ(p)[πp] + τ(p⊥)[πp⊥ ],

it follows that [πp] = [π], for all p ∈ π(M)′ ∩RU , p 6= 0. By Lemma 4.3, it follows that two
projections in π(M)′ ∩ RU are Murray-von Neumann equivalent into π(M)′ ∩ RU if and
only if they have the same trace. Since π(M)′ ∩ RU is diffuse, Exercise 4.7 completes the
proof. �

From Theorem 4.1 we obtain the following geometric reformulation of Popa’s question.

Problem 4.8. (Geometric reformulation of Popa’s question) Does Hom(M,RU )
have extreme points?

This problem is still open. There are two obvious ways to try to attack it, leading to
two related problems, whose positive solution would imply a positive solution of Popa’s
question.

2The notation Adu in the diagram stands for the conjugation by the unitary operator u.
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(1) Since Hom(M,RU ) is a bounded, closed and convex subset of a Banach space one
cannot apply Krein-Milman’s theorem and conclude existence of extreme points.
Nevertheless, one can ask the question whether the Banach space into which Hom(M,RU )
embeds is a dual Banach space. In this case, Hom(M,RU ) would be compact in
the weak*-topology and one could apply Krein-Milman’s theorem.

Problem 4.9. Does Hom(M,RU ) embed into a dual Banach space?

(2) The second approach is through a simple observation about geometry of Banach
spaces. Recall that a Banach space B is called strictly convex if b1 6= b2 and
||b1|| = ||b2|| = 1 together imply that ||b1 + b2|| < 2.

Exercise 4.10. Let B be a strictly convex Banach space and C ⊆ B be a convex
subset. Fix c0 ∈ C and assume that there is c ∈ C such that d(c0, c) is maximized
in C. Show that c is an extreme point of C.

Exercise 4.11. Let M = W ∗(X) be a singly generated II1-factor which embeds
into RU . Fix [π0] ∈ Hom(M,RU ). Show that the function Hom(M,RU ) 3 [π] →
d([π0], [π]) attains its maximum.

With a little bit more effort one can extend Exercise 4.11. Consequently, Exer-
cises 4.10 and 4.11 together imply that if the convex-like structure on Hom(M,RU )
were strictly convex, then Popa’s question qould have affirmative answer.

Problem 4.12. Is the convex-like structure on Hom(M,RU ) strictly convex?

The study of the extreme points of Hom(M,RU ) is not interesting only in light of Popa’s
question, but also because it provides a method to distinguish II1-factors. For instance,
Brown proved in [1], Corollary 5.4, that rigidity of an RU -embeddable II1-factor M with
property (T) reflects on the rigidity of the set of the extreme points of its Hom(M,RU ),
that turns out to be discrete. Property (T) for von Neumann algebras is a form of rigid-
ity introduced by Connes and Jones in [4] and inspired to Kazhdan’s property (T) for
groups [8]. A simple way to define property (T) for von Neumann algebras is through the
following definition.

Definition 4.13. A II1-factor M with trace τ has property (T) if for all ε > 0, there exist
δ > 0 and a finite subset F of M such that for all τ -preserving unital completely positive
maps φ : M →M , one has

sup
x∈F
||φ(x)− x||2 ≤ δ ⇒ sup

Ball(M)
||φ(x)− x||2 ≤ ε.

The interpretation of property (T) as a form of rigidity should be clear: if a trace-
preserving ucp map is closed to the identity on a finite set, then it is actually close to the
identity on the whole von Neumann algebra.

Classical examples of factors with property (T) are the ones associated to SL(n,Z), with
n ≥ 3.

Theorem 4.14. (N.P. Brown [1], Corollary 5.4) If M has property (T), then the set
of extreme points of Hom(M,RU ) is discrete.
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Proof. Popa proved in [10], Section 4.5, that for every ε > 0, there is a δ > 0 such that if
[π], [ρ] ∈ Hom(M,RU ) are at distance ≤ δ, then there are projections p ∈ π(M)′ ∩RU and
q ∈ ρ(M) ∩ RU and a partial isometry v such that v∗v = p, vv∗ = q, τ(p) > 1 − ε, and
vπ(x)v∗ = qρ(x), for all x ∈M . This implies that pπ and qρ are approximatively unitarily
equivalent and consequently, by countable saturation, [πp] = [ρq].

Now fix ε > 0 assume that [π] and [ρ] are δ-close extreme points and take projections
p ∈ π(M)′ ∩ RU and q ∈ ρ(M)′ ∩ RU such that [πp] = [ρq]. Since [π] and [ρ] are extreme
points, we can apply Theorem 4.1] and conclude that [π] = [πp] and [ρ] = [ρq], that is,
[π] = [ρ]. �

Remark 4.15. Observe that Theorem 4.14 tells that the set of extreme points is discrete
but, as far as we know, it might be empty. The problem of proving that extreme points
actually exist for RU -embeddable II1-factors with property (T) is open.

We conclude mentioning that also examples of factors with a continuous non-empty set
of extreme points are also known in (see [1] Corollaries 6.10 and 6.11).
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